A Non-precious Metal, Ni Molecular Catalyst for a Fuel Cell Cathode

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyaniline-derived Non-Precious Catalyst for the Polymer Electrolyte Fuel Cell Cathode

This paper focuses on a new polyaniline-derived non-precious cathode catalyst with high oxygen-reduction activity, verified in electrochemical and fuel cell testing. The rotating disk (RDE) onset and half-wave potential (E1⁄2) of oxygen reduction were measured at 0.90 V and 0.77 V, respectively. Rotating ring-disk electrode (RRDE) study revealed very good selectivity in the fourelectron reducti...

متن کامل

Development of a metal oxide cathode catalyst for air- cathode microbial fuel cells

Microbial fuel cell (MFC) converts the organic compounds to electricity. The higher cost of the cathode catalyst for oxygen reduction reaction (ORR) is one of the major limitations in the technology. Therefore, the study endeavored to introduce a novel cathode catalyst i.e. porous Co3O4 flakes for ORR in MFCs. The flakes exhibited the micropore surface area of 1.0372 m2/g. The MFC with cobalt o...

متن کامل

High-performance hydrogen fuel cell using nitrate reduction reaction on a non-precious catalyst.

The H(2)-NO(3)(-) electrochemical cell using nitrate reduction on a non-precious cathode catalyst shows much improved efficiency despite ∼75% reduction of Pt metal loading as compared to typical PEMFCs using typical ORR on precious catalysts.

متن کامل

Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells

In this report, we present the systematic preparation of active and durable non-precious metal catalysts (NPMCs) for the oxygen reduction reaction in polymer electrolyte fuel cells (PEFCs) based on the heat treatment of polyaniline/metal/carbon precursors. Variation of the synthesis steps, heat-treatment temperature, metal loading, and the metal type in the synthesis leads to markedly different...

متن کامل

Lattice Boltzmann Pore-Scale Investigation of Coupled Physical-electrochemical Processes in C/Pt and Non-Precious Metal Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells

High-resolution porous structures of catalyst layers (CLs) including non-precious metal catalysts (NPMCs) or Pt for proton exchange membrane fuel cells are reconstructed using the quartet structure generation set. The nanoscale structures are analyzed in terms of pore size distribution, specific surface area, and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmannme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chemistry Letters

سال: 2016

ISSN: 0366-7022,1348-0715

DOI: 10.1246/cl.150988